Rotate Function

Given an array of integers A and let n to be its length.

Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:

F(k) = 0 Bk[0] + 1 Bk[1] + ... + (n-1) * Bk[n-1].

Calculate the maximum value of F(0), F(1), ..., F(n-1).

Note: n is guaranteed to be less than 105.

Example:

A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

暴力法,超时

class Solution {
public:
    int maxRotateFunction(vector<int>& A) {
        int n = A.size();
        if(n <= 0)  return 0;
        int maxRes = INT_MIN;
        for(int j = 0; j < n; j++){
            int cal =0;
            for(int i = 0; i < n; i++){
                cal += A[(j + i)%n]*i;
            }
            maxRes = max(cal, maxRes);
        }

        return maxRes;
    }
};
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1]
       = 0 * Bk[1] + 1 * Bk[2] + ... + (n-2) * Bk[n-1] + (n-1) * Bk[0]
Then,

F(k) - F(k-1) = Bk[1] + Bk[2] + ... + Bk[n-1] + (1-n)Bk[0]
              = (Bk[0] + ... + Bk[n-1]) - nBk[0]
              = sum - nBk[0]
Thus,

F(k) = F(k-1) + sum - nBk[0]
What is Bk[0]?

k = 0; B[0] = A[0];
k = 1; B[0] = A[len-1];
k = 2; B[0] = A[len-2];
...
class Solution {
public:
    int maxRotateFunction(vector<int>& A) {
        int allSum = 0;
        int len = A.size();
        int F = 0;
        for (int i = 0; i < len; i++) {
            F += i * A[i];
            allSum += A[i];
        }
        int maxRes = F;
        for (int i = len - 1; i >= 1; i--) {
            F = F + allSum - len * A[i];
            maxRes = max(F, maxRes);
        }
        return maxRes;  
    }
};

results matching ""

    No results matching ""