Rotate Function
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
F(k) = 0 Bk[0] + 1 Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1).
Note: n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
暴力法,超时
class Solution {
public:
int maxRotateFunction(vector<int>& A) {
int n = A.size();
if(n <= 0) return 0;
int maxRes = INT_MIN;
for(int j = 0; j < n; j++){
int cal =0;
for(int i = 0; i < n; i++){
cal += A[(j + i)%n]*i;
}
maxRes = max(cal, maxRes);
}
return maxRes;
}
};
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1]
= 0 * Bk[1] + 1 * Bk[2] + ... + (n-2) * Bk[n-1] + (n-1) * Bk[0]
Then,
F(k) - F(k-1) = Bk[1] + Bk[2] + ... + Bk[n-1] + (1-n)Bk[0]
= (Bk[0] + ... + Bk[n-1]) - nBk[0]
= sum - nBk[0]
Thus,
F(k) = F(k-1) + sum - nBk[0]
What is Bk[0]?
k = 0; B[0] = A[0];
k = 1; B[0] = A[len-1];
k = 2; B[0] = A[len-2];
...
class Solution {
public:
int maxRotateFunction(vector<int>& A) {
int allSum = 0;
int len = A.size();
int F = 0;
for (int i = 0; i < len; i++) {
F += i * A[i];
allSum += A[i];
}
int maxRes = F;
for (int i = len - 1; i >= 1; i--) {
F = F + allSum - len * A[i];
maxRes = max(F, maxRes);
}
return maxRes;
}
};