64. Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
简单原始的动态规划算法
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
if(grid.empty()) return 0;
int row = grid.size();
int col = grid[0].size();
vector<vector<int>> dp(grid.size(), vector<int>(grid[0].size(), INT_MAX));
dp[0][0] = grid[0][0];
for(int i = 1; i < grid[0].size(); i++){
dp[0][i] = dp[0][i -1] + grid[0][i];
}
for(int i = 1; i < grid.size(); i++){
dp[i][0] = dp[i- 1][0] + grid[i][0];
}
for(int i = 1; i < grid.size(); i++)
for(int j = 1; j < grid[0].size(); j++){
dp[i][j] = min(dp[i - 1][j] + grid[i][j], dp[i][j - 1]+ grid[i][j]);
}
return dp[row - 1][col - 1];
}
};
压缩矩阵空间
我们发现只使用一行或者一列就能保存全部的上一状态
使用行或列中的最小的来生成dp;
假设使用行来生成
7,0,8,8,0,3,5,8,5,4
4,1,2,9,9,6,0,8,6,9
9,7,1,1,0,1,2,4,1,7
dp[i]表示第i行,
刚开始,dp[i]初始化为第0列的所有的值,遍历过程中,
dp[i] = min(dp[i - 1], dp[i]) + grid[i][]
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int row = grid.size();
int col = grid[0].size();
if( row == 0 || col == 0) return 0;
vector<int> dp(row, INT_MAX);
dp[0] = grid[0][0];
for(int i = 1; i < row; i++){
dp[i] = dp[i - 1] + grid[i][0];
std::cout<<dp[i]<<std::endl;
}
for(int i = 1; i < col; i++){
dp[0] = dp[0] + grid[0][i];
for(int j = 1; j < row; j++){
dp[j] = min(dp[j - 1], dp[j]) + grid[j][i];
}
}
return dp[row - 1];
}
};
空间复杂度
$$O(min(row, col))$$
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int row = grid.size();
int col =grid[0].size();
if(row == 0 || col == 0)
return 0;
int more = max(row, col);
int less = min(row, col);
int rowB = (more == row);
vector<int> dp(less, INT_MAX);
dp[0] = grid[0][0];
for(int i = 1; i < less; i++){
dp[i] = dp[i - 1] + (rowB?grid[0][i]:grid[i][0]);
}
for(int i = 1; i < more; i++){
dp[0] = dp[0] + (rowB?grid[i][0]:grid[0][i]);
for(int j = 1; j < less; j++){
dp[j] = min(dp[j - 1], dp[j]) + (rowB?grid[i][j]:grid[j][i]);
}
}
return dp[less - 1];
}
};