N-Queens
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
For example, There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."],
["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> res;
//record[i]表示第i行皇后放置的所在列数
vector<int> record(n, 0);
vector<string> sol(n, string(n, '.'));
dfs(res, sol, 0, n, record);
return res;
}
private:
void dfs(vector<vector<string>> &ret, vector<string> &sol, int i, int n, vector<int> &record){
if(i == n){
ret.push_back(sol);
return;
}
for(int j = 0; j < n; j++){
if(isValid(i, j, record)){
sol[i][j] = 'Q';
record[i] = j;
dfs(ret, sol, i + 1, n, record);
sol[i][j] = '.';
}
}
}
bool isValid(int i, int j, vector<int> &pos){
for(int k = 0; k < i; k++){
if(pos[k] == j || abs(pos[k] - j) == abs(k - i))
return false;
}
return true;
}
};