368. Largest Divisible Subset
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
nums: [1,2,3]
Result: [1,2] (of course, [1,3] will also be ok) Example 2:
nums: [1,2,4,8]
Result: [1,2,4,8]
题目大意:给出一个数组,求出一个子数组,子数组中所有的两个数组成的数对可以相互整除。
运用动态规划的方法,dp[i] = dp[j] + 1(如果num[i] % num[j] == 0)
class Solution {
public:
vector<int> largestDivisibleSubset(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<int> dp(nums.size(), 0);
vector<int> son(nums.size(), 0);
int largest = 0;
int last = 0;
for(int i = 0; i < nums.size(); i++){
for(int j = i; j >= 0; j--){
if(nums[i] % nums[j] == 0 && dp[j] + 1 > dp[i]){
dp[i] = dp[j] + 1;
son[i] = j;
}
if(dp[i] > largest){
largest = dp[i];
last = i;
}
}
}
vector<int> res;
for(int i = 0; i < largest; i++){
res.insert(res.begin(), nums[last]);
last = son[last];
}
return res;
}
};
倒过来求这样不用在结果前面插入,从后面开始计算
class Solution {
public:
vector<int> largestDivisibleSubset(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<int> dp(nums.size(), 0);
vector<int> parent(nums.size(), 0);
int largest = 0;
int start = 0;
for(int i = nums.size() - 1; i >= 0; --i){
//此处j=i对应着上面将dp初始化为0;从后往前迭加,[1,2,4,5,8],效果为[8]->[4, 8]->[2, 4, 8]->[1,2,4,8]
for(int j = i; j < nums.size(); j++){
if(nums[j] % nums[i] == 0 && dp[i] < dp[j] + 1){
dp[i] = dp[j] + 1;
parent[i] = j;
}
if(dp[i] > largest){
largest = dp[i];
start = i;
}
}
}
vector<int> res;
for(int i = 0; i < largest; i++){
res.push_back(nums[start]);
start = parent[start];
}
return res;
}
};