62. Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
显然dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n] = {0};
for(int i = 0; i < n; i++)
dp[0][i] = 1;
for(int j = 0; j < m; j++)
dp[j][0] = 1;
for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
return dp[m - 1][n -1];
}
};
状态压缩后的dp
class Solution {
public:
int uniquePaths(int m, int n) {
if(m == 0 || n == 0) return 0;
vector<int> dp(m, 1);
for(int i = 1; i < n; i++){
for(int j = 1; j < m; j++){
dp[j] = dp[j - 1] + dp[j];
}
}
return dp[m - 1];
}
};
unique path ii
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example, There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if(m == 0 || n == 0) return 0;
vector<int> dp(m, 1);
dp[0] = 1 - obstacleGrid[0][0];
//初始化第0列
for(int i = 1; i < m; i++){
if(obstacleGrid[i][0] == 0 && dp[i - 1])
dp[i] = 1;
else
dp[i] = 0;
}
for(int i = 1; i < n; i++){
dp[0] = (dp[0] &&obstacleGrid[0][i] == 0)?1:0;
std::cout<<dp[0]<<std::endl;
for(int j = 1; j < m; j++){
if(obstacleGrid[j][i] == 0)
dp[j] = dp[j - 1] + dp[j];
else
dp[j] = 0;
}
}
return dp[m - 1];
}
};