96. Unique Binary Search Trees
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
现在假设要求的是n,根节点可以是1,2,3,...n。
假设根节点是i,则左子树包括(1,2,3, i -1),右子树包括(i + 1, ..., n)
dp[n] = dp[0]*dp[n-1] + dp[1]*dp[n-2] +...+dp[i - 1] * dp[n-i] + dp[n - 1]*dp[0]
dp[0]*dp[n-1]与dp[n - 1]*dp[0]表示的是不同的,
dp[0]*dp[n-1]表示以1为根节点
dp[n - 1]*dp[0]表示以n作为根节点
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i <= n; i++){
for(int j = 1; j <= i; j++){
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
};