Count Numbers with Unique Digits
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < $$10^n$$.
Example: Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding [11,22,33,44,55,66,77,88,99])
题目大意是:给定n,求出所有小于$$10^n$$的所有的数(数中的数字唯一),显然这个可以用排列组合来解
1位数 (0,1, 2, 3, 4, ...9)中选一个 是10;
2位数 最高为不能为0,所以是 9*9 = 81;
3位数 998
...
9位数 998765432;
10位数 998765432*1;
11位数 0;
class Solution {
public:
int countNumbersWithUniqueDigits(int n) {
if(n == 0) return 1;
int high = 9;
int rem = 9;
int res = 10;
while(n--> 1 && rem > 0){
high = high * rem;
res += high;
rem--;
}
return res;
}
};
回溯法:会超时
class Solution {
public:
int countNumbersWithUniqueDigits(int n) {
if(n > 10) return countNumbersWithUniqueDigits(10);
vector<int> used(10, 0);
long max = (long)pow(10, n);
//n == 0
int count = 1;
for(int i = 1; i < 10; ++i){
used[i] = 1;
count += dfs(i, max, used);
used[i] = 0;
}
return count;
}
private:
int dfs(long prev, long max, vector<int> used){
int count = 0;
if (prev < max) {
count += 1;
} else {
return count;
}
for (int i = 0; i < 10; i++) {
if (!used[i]) {
used[i] = 1;
long cur = 10 * prev + i;
count += dfs(cur, max, used);
used[i] = 0;
}
}
return count;
}
};