230. Kth Smallest Element in a BST
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up: What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
Try to utilize the property of a BST. What if you could modify the BST node's structure? The optimal runtime complexity is O(height of BST).
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
int numOfLeft = countNodes(root->left);
if(k <= numOfLeft){
return kthSmallest(root->left, k);
}else if( k > numOfLeft + 1){
return kthSmallest(root->right, k - 1- numOfLeft);
}else
return root->val;
}
private:
int countNodes(TreeNode *r){
if(r == NULL) return 0;
return countNodes(r->left) + 1 + countNodes(r->right);
}
};
inorder-traversal
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
stack<TreeNode *> st;
while(!st.empty() || root != NULL){
if(root){
st.push(root);
root = root->left;
}else{
auto temp = st.top();
st.pop();
if( --k == 0) return temp->val;
root = temp->right;
}
}
//can't go here, because k is alway valid
return -1;
}
};