222. Count Complete Tree Nodes
Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia: In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
1.首先得到这个完全二叉树的高度h
2.然后判断根节点的右子树的最左节点的高度l与h的关系,
(1)若l == h - 1,那么左子树为满二叉树
1
/ \
2 3
/ \ / \
4 5 6
(2)若l = h - 2,那么左子树为完全二叉树
1
/ \
2 3
/ \
4 5
212ms
class Solution {
public:
int countNodes(TreeNode* root) {
int h = height(root);
if(h < 0) return 0;
return height(root->right) == h - 1 ?(1<<h) + countNodes(root->right):(1<<h-1) + countNodes(root->left);
}
private:
int height(TreeNode *r){
return r == NULL ? -1:1+height(r->left);
}
};
以前的代码:92ms
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int countNodes(TreeNode* root) {
if(root == NULL)
return 0;
return bs(root, 1, heightOfCompleteBT(root, 1));
}
private:
int heightOfCompleteBT(TreeNode* root, int level){
while(root){
level++;
root = root->left;
}
return level - 1;
}
int bs(TreeNode *r, int l, int h){
if(l == h)
return 1;
if(heightOfCompleteBT(r->right, l+1) == h){
return (1<<(h-l)) + bs(r->right, l + 1, h);
}else
return (1<<(h - l - 1)) + bs(r->left, l + 1, h);
}
};